Nutrition & Immune System

Nutrition and the Immune System

Wholesome nutrition is the key to maintaining a healthy immune system and resistance to disease. Commercial foods ingested by animals on a regular basis may not be balanced in terms of major nutrients, minerals and vitamins, and some continue to add chemicals to the final product to enhance its stability and shelf-life. Nutritional deficiencies or imbalances as well as exposures to various chemicals, drugs and toxins present a continual immunological challenge which can suppress immune function, especially in those animals genetically susceptible to immune dysfunction (immune deficiency, autoimmunity, allergies).
The exciting new field of nutrigenomics is an emerging science that studies the molecular relationships between nutrition and the response of genes in promoting health.  Different diets elicit different patterns of gene and protein expression as well as metabolite production; these are termed molecular dietary signatures.
Genetic differences between individuals lead to quantitative variations in dietary requirements for energy and nutrient needs, and to maintain health. Also, genetic defects may result in inborn errors of metabolism that affect one or more pathways involving nutrients or their metabolites.  While minimal and maximal nutrient requirements have been established for most vitamins and trace mineral elements, optimum amounts for every individual cannot be assumed.  Examples of important vitamin and mineral requirements in this regard include vitamin C, vitamin E and selenium, vitamin A, copper and vitamin B12. Similarly, a wide variation occurs in the energy needs of dogs depending on their breed, age, sex, and size.

Nutritional factors that play an important role in immune function include zinc, selenium and vitamin E, vitamin B6 (pyridoxine), and linoleic acid.  Deficiency of these compounds impairs both humoral as well as cell-mediated immunity.  The requirement for essential nutrients increases during periods of rapid growth or reproduction and also may increase in geriatric individuals, because immune function and the bioavailability of these nutrients generally wanes with aging.  As with any nutrient, however, excessive supplementation can lead to significant clinical problems, many of which are similar to the respective deficiency states of these ingredients.  Supplementation with vitamins and minerals should not be viewed as a substitute for feeding premium quality fresh and/or commercial pet foods. Nutritional Supplements for Telomere Activity are important as well so make sure to include these in their diet.

Synthetic antioxidants like butylated hydroxyanisole (BHA) and butylated hydroxy-toluene (BHT) have been used as preservatives in human and animal foods for more than 30 years. More recently pet food manufacturers preferred to use ethoxyquin, because of its excellent antioxidant qualities, high stability and reputed safety.  But, significant controversy arose about the safety of ethoxyquin when chronically fed at permitted amounts in dog and cat foods.  Toy breed dogs were particularly at risk because they ingest proportionately more food and preservative for their size in order to sustain their metabolic needs.

Naturally occurring antioxidants (vitamins E and C, citric acid) are used almost exclusively today, in response to consumer and professional queries about the chronic effects of feeding synthetic chemical antioxidants to pets.

Nutrition and Thyroid Metabolism

Nutritional influences can have a profound effect on thyroid metabolism.  The classical example is the iodine deficiency that occurs in individuals eating cereal grain crops grown on iodine-deficient soil.  This will impair thyroid metabolism because iodine is essential for formation of thyroid hormones. Iron and zinc also are important minerals in regulating thyroid metabolism. Another link has recently been shown between selenium deficiency and hypothyroidism. Cereal grain crops grown on selenium-deficient soil will contain relatively low levels of selenium.  While commercial pet food manufacturers compensate for variations in basal ingredients by adding vitamin and mineral supplements, it is difficult to determine optimum levels for so many different breeds of animals having varying genetic backgrounds and metabolic needs.

The selenium-thyroid connection has significant clinical relevance, because blood, but not tissue, levels of thyroid hormones rise in selenium deficiency. Thus, selenium-deficient individuals showing clinical signs of hypothyroidism could be overlooked on the basis that blood levels of thyroid hormones appear normal.  The selenium issue is further complicated because the synthetic antioxidants still used in some foods to protect fats from rancidity can impair the bioavailability of vitamin A, vitamin E and selenium, and alter cellular membrane function, metabolism and detoxification.  Because animals with autoimmune thyroid disease have generalized metabolic imbalance and often have associated immunological dysfunction, it is advisable to minimize their exposures to unnecessary drugs, chemicals and toxins, and to optimize their nutritional status with healthy balanced diets. Families of dogs susceptible to thyroid and other autoimmune diseases show generalized improvement in health when fed premium cereal-based diets preserved naturally with vitamins E and C rather than with the synthetic chemical antioxidants mentioned above.  Fresh vegetables cooked with Italian herbs and garlic, dairy products such as yogurt or low fat cottage cheese, or a variety of meats and whitefish can be added.

Nutritional Management  (Commercial, Home-Made and Raw Food Diets)

Many veterinarians treating animals suffering from immunological diseases appreciate that alternative nutritional management is an important step in minimizing their patient’s environmental challenges.  The results of this approach have been remarkable.  The replacement food must be of good quality and preferably of relatively low protein content (20-22%).   Increasing carbohydrate and reducing protein content, while maintaining high quality protein, has been shown to be beneficial for many affected animals and is also believed to have a positive effect on behavior.  Diet and behavior appear to be linked because certain highly nutritious foods may aggravate the condition of dogs with behavioral problems (dominant aggression, hyperactivity, and fear). For allergic animals, elimination diets with restricted or novel antigen source are given for 6-12 weeks to evaluate their benefit to the patient.  Homemade diets can also be used provided that the formula is properly balanced. All other food supplements, including treats, are withdrawn. Example ingredients that have been used successfully, include whitefish, rabbit, venison, duck, ostrich, emu, buffalo, and turkey mixed with potato, sweet potato and other vegetables (except onions and cruciferous vegetables). Grains are often avoided, at least initially, although novel grains like quinoa, sorghum, barley or flax usually have been well tolerated.

For animals with liver disease, the author’s liver “cleansing diet” includes:

White potato + sweet potato (50/50) and  white fish — 2/3 potato mix and 1/3 fish. Season with garlic, mixed Italian herbs or parsley, salt and pepper.  Later, can add chopped carrots, zucchini, yellow squash, green beans, spinach, and scrambled eggs, if these are tolerated. An infant liquid multivitamin or product like Missing Link should be added, if feeding the diet for long term.

Raw food diets have been gaining in popularity as well. A key feature of these diets is the variety they provide. One of the prototype diets [BARF (bones and raw food)] of Dr. Ian Billinghurst recommends feeding  a dog 60% raw meaty bones (chicken backs,wings and necks), with the rest of the diet composed of  ground vegetables mixed with ground meat, and supplements such as kelp, vitamin E and vitamin C. Nutritional analyses on some commercially available raw diets suggest that the raw meaty bones commonly used provide 40-70% protein, and the meat/vegetable mixtures range from 20-50% protein. The question has arisen about the potential for such high protein diets to affect renal function when fed continuously, as high protein diets are reported to induce renal hypertrophy, and increase renal blood flow and glomerular filtration rate. While this concern may not pertain to healthy dogs, it could play a role in dogs with previously compromised renal function.

Maintaining the appropriate ratio of trace minerals, vitamins, fatty acids and other nutritive elements is especially important for patients with acute and chronic diseases, as their metabolic demands have increased to sustain cell turnover and tissue repair.  Typical supplements include: vitamin-mineral mix, antioxidants (vitamins A,C, D, and E and selenium), digestive enzymes, brewer’s yeast, kelp, honey, coat additives, apple cider vinegar, hydrochloric acid (used sparingly), yoghurt, Willard Water, liver, eggs, garlic, and plenty of fresh water.

Vitamin A and E have been shown to enhance immune function in small animals, as the former can beneficially influence T-helper responses, and the latter is known to improve both cellular and humoral immunity.  Dietary carotenoids, especially lutein and beta-carotene, have been reported to modulate both cell-mediated and humoral immunity in dogs but not in cats.

Raw Food Diet Study

In collaboration with Drs. Susan Wynn and Joe Bartges, we investigated the basic clinical laboratory parameters of 256 healthy adult dogs of varying ages and breed types being fed raw food diets for at least 9 months. The same laboratory (Antech Diagnostics) analyzed the samples from 227 of the dogs. From this group, there were 87 dogs fed the classical BARF diet of Dr. Ian Billinghurst, 46 dogs were fed the Volhard diet of Wendy Volhard, and the remaining 94 dogs were fed other types of custom raw diets.

There were 69 dog breeds represented, including 233 purebreds, 16 crossbreds, 1 mixed breed and 6 of unknown breed type.  The predominant breeds represented included: 28 Labrador Retreivers, 21 Golden Retrievers and 21 German Shepherd Dogs, 10 Whippets, 8 Shetland Sheepdogs and  8 Bernese Mountain Dogs, 6 Rottweilers, 6 Border Collies, 6 Doberman Pinschers, and 6 German Pinschers, and 5 Cavalier King Charles Spaniels, 5 Australian Shepherds, 5 Borzoi, and 5 Great Danes.  Most of the dogs were neutered males (73) or spayed females (85), whereas there were 31 intact males and 32 intact females. Another 6 dogs were of unknown sex.  The mean age of the group was 5.67 ± 3.52 years (mean ± SD); and the mean length of time fed a raw food diet was 2.84 ± 2.54 years.  The data from this group of dogs were compared to the same laboratory parameters measured at Antech Diagnostics from 75 healthy adult dogs fed a commercial cereal-based kibbled diet. Preliminary statistical comparisons of results for the raw and cereal-based diets found them to be essentially the same with the following notable exceptions:

•  Higher packed cell volume (hematocrit) in all raw diet fed groups (range of  51.0 ± 6.6 – 53.5 ± 5.6 %) versus cereal-based kibble (47.6 ± 6.1 %).
•  Higher blood urea nitrogen (BUN) in all raw diet fed groups (range of  18.8 ± 6.9 – 22.0 ± 8.7 mg/dL) versus cereal-based kibble (15.5 ± 4.7 mg/dL).
•  Higher serum creatinine in the Volhard raw diet group only (1.20 ± 0.34 mg/dL) versus cereal-based kibble (1.07 ± 0.28 mg/dL)

Results from this initial analysis indicated that dogs fed raw meats (natural carnivores) have higher red blood cell and blood urea nitrogen levels than dogs fed cereal-based food (obligate omnivores).  A recently completed detailed analysis of the other parameters showed that statistically different parameters also included higher hemoglobin, MCH, MCV, MCHC, total protein, albumin, BUN/creatinine ratio, calcium, sodium, osmolality, and magnesium. Statistically lower values were seen for total leukocyte, neutrophil, and lymphocyte counts, phosphorus and glucose. Thus, the normal reference values for dogs fed raw food diets should be revised.

The intake of proportionately large amounts of raw meat protein and the significantly higher BUN and other concentrations found here raise the possibility of spillover into the urine of  measurable amounts of urea nitrogen and/or albumin.  If so, are there potential  short and long term clinical consequences ?

Accordingly, the presence of microlbuminuria [an indicator of early renal disease] was assessed in dogs fed exclusively on raw foods for at least 12 months in dogs using the Heska ERD – HealthScreen ® test kit. The urine of 37 dogs was evaluated and results indicated that feeding a diet of raw ingredients does not appear to cause leakage of albumin into the urine in most of the dogs tested. In five dogs, there was a low-grade positive reaction in the test, but two of them were found to have urinary tract infections. The other three dogs were lost to follow up.
W. Jean Dodds, DVM
HEMOPET
938 Stanford Street
Santa Monica, CA 90403
(310) 828-4804; FAX (310) 453-5240
www.hemopet.org; hemopet@hotmail.com

References

●  Berry M J, Larsen P R. The role of selenium in thyroid hormone action. End Rev, 13(2): 207-219, 1992.
●  Burkholder W J, Swecker W S Jr. Nutritional influences on immunity. Sem Vet Med Surg (Sm An), 5(3): 154-156, 1990.
● Der Marderosian QA. The Review of Natural Products. Facts and Comparisons, St. Louis, MO, Lippincott, Williams & Wilkins, 2001, pp 389-390, 508-509.
●   Dodds W J. Complementary and alternative medicine: the immune system. Clin Tech Sm An Pract, 17(10: 58-63, 2002.
●  Dodds W J,  Donoghue S. Interactions of clinical nutrition with genetics, Chapter 8. In: The  Waltham Book of Clinical Nutrition of the Dog and Cat. Pergamon Press Ltd., Oxford, 1994, p.105-117.
●  Dodds W J. Pet food preservatives and other additives, Chapter 5. In: Complementary and Alternative Veterinary Medicine.  Mosby, St. Louis, 1997; pp 73-79.
●  Roudebush P. Ingredients associated with adverse food reactions in dogs and cats. Adv Sm An Med Surg, 15(9): 1-3, 2002.
●  Volhard W, Brown K L. The Holistic Guide for a Healthy Dog. Howell Book House, New York, 1995, 294 pp.
●  Wynn S G, Bartges J, Dodds W J.  Raw meaty bones-based diets may cause prerenal azotemia in normal dogs.  AAVN Nutrition Research Symposium, June 2003 (

FAQs of Vaccines

FAQs VACCINE ISSUES
W. Jean Dodds, DVM
Hemopet/Hemolife
www.hemopet.org

Q. Is there risk of overvaccinating with vaccines not needed for a specific animal ?
A. Yes. Vaccines contain material designed to challenge the immune system of the pet, and so can cause adverse reactions.  They should not be given needlessly, and should be tailered to the pet’s individual needs.

Q. Are the initial series of puppy core vaccines immunosuppressive ?
A. Yes. This period of immuno suppression from MLV canine distemper and hepatitis vaccines coincides with the time of vaccine-induced viremia, from days 3 to 10 after vaccination.

Q. Can smaller doses of vaccines be given to toy dog breeds ?
A. Yes, they can, although some vaccinologists believe that the whole amount should be given because it represents the minimum immunizing dose. My view is that a half dose of vaccines, other than rabies, as required by law, should suffice and would be safer.

Q. Can anesthetized patients be vaccinated ?
A.This is not preferred, because a hypersensitivity reaction  with vomiting and aspiration could occur and anesthetic agents can be immunomodulating.

Q. Is it safe to vaccinate pregnant pets ?
A.  Absolutely not.

Q. Should pets with immunosuppressive diseases such as cancer or autoimmune diseases, or adverse vaccine reactions/ hypersensitibvity receive booster vaccinations  ?
A. No. Vaccination with MLV products should be avoided as the vaccine virus may cause disease; vaccination with killed products may aggravate the immune-mediated disease or be ineffective.  For rabies boosters that are due, local authorities may accept titers instead.

Q. If an animal receives immunosuppressive therapy, how long afterwards can the pet  safely be vaccinated ?
A.  Wait at least 2 weeks.

Q. Should vaccines be given more often that 2 weeks apart even if a different vaccine is being given ?
A. No. The safest and most effective interval is 3-4 weeks apart.

Q.  At what age should the last vaccine dose be given in the puppy and kitten series ?
A. The last dose of vaccine should be given between 14-16 weeks.  Rabies vaccine should preferably be given separately as late as possible under the law (e.g. 20-24 weeks).

Q. Can intranasal Bordetella vaccine be given parenterally ?
A. No. The vaccine can cause a severe local reaction and may even kill the pet.

Q. Will a killed parenteral Bordetella vaccine given intranasally produce immunity ?
A. No.

Q.  Can MLV parenteral vaccines for cats be used intranasally ?
A. Never. Any mucosal (e.g. conjunctival and nasal) contact with these vaccines can cause disease.

Q. Are homeopathic nosodes capable of immunizing pets ?
A. No. There is no scientific documentation that nosodes protect against infectious diseases of pets. The one parvovirus nosode trial conducted years ago did not protect against challenge.

Q. Should disinfectant be used at the vaccine injection site?
A. No. Disinfectants could inactivate a MLV product.

Q. Can vaccines cause autoimmune diseases?
A. Vaccines themselves do not cause these diseases, but they can trigger autoimmune responses followed by disease in genetically predisposed animals, as can any infection, drug, or chemical / toxic exposures etc.

Q. Can a single vaccine dose provide any benefit to the dog or cat? Will it benefit the canine and feline populations?
A. Yes. One dose of a MLV canine or feline core vaccine should provide long term immunity when given to animals at or after 16 weeks of age. Every puppy and kitten 16 weeks of age or older should receive at least one dose of the MLV core vaccines. We need to vaccinate more animals in the population with core vaccines to achieve herd immunity (e.g. 75% or higher, when probably only 50% of dogs and 25% of cats are vaccinated) and thereby prevent epidemic outbreaks.

Q. If an animal receives only the first dose of a vaccine that needs two doses to immunize, will it have immunity ?
A. No. A single dose of a two-dose vaccine like Leptospirosis or feline leukemia vaccine will not provide immunity. The first dose is for priming the immune system. The second for boosting the immunity has to be given within 6 weeks; otherwise the series has to start over again. After those two doses, revaccination with a single dose can be done at any time.

Q. Can maternally derived antibodies (MDA) also block immunity to killed vaccines and prevent active immunization with MLV vaccines ?
A. Yes. MDA can block certain killed vaccines, especially those that require two doses to immunize.  With MLV vaccines, two doses are often recommended, particularly in young animals, to be sure one is given beyond the neutralizing period of MDA.

Q. How long after vaccination does an animal develop immunity that will prevent severe disease when the core vaccines are used?
A. This is dependent on the animal, the vaccine, and the disease.
· The fastest immunity is provided by CDV vaccines — MLV and recombinant canarypox virus vectored. The immune response starts within mins – hrs and provides protection within a day without interference from MDA.
· Immunity to CPV-2 and FPV develops after 3-5 days when an effective ML V vaccine is used. In contrast, killed FPV-2 vaccine often takes 2 – 3 wks or longer to provide protective immunity.
· CAV-2 MLV given parenterally provides immunity against CAV-1 in 5 to 7 days.
· Time from vaccination to immunity is difficult to determine for FCV and FHV-1 because some animals will not develop any immunity.

Q. Can dogs and cats be non-responders and fail to develop an immune response to vaccines  ?
A. Yes. This is a genetic characteristic seen particularly in some breeds or dog families. Boosting them regularly will not produce measurable circulating immunity, but they may be protected against disease by their cell-mediated and secretory immunity.

Q. Are there parvovirus and distemper virus field mutants that are not adequately protected by current MLV vaccines ?
A. No. All the current CPV-2 and CDV vaccines provide protection from all known viral isolates, when tested experimentally as well as in the field. The current CPV-2 and CPV-2b vaccines provide both short and long term protection from challenge by the CPV-2c variant.

Q. Are serum antibody titres useful in determining vaccine immunity?
A. Yes.  They are especially useful for CDV, CPV-2 and CAV-1 in the dog, FPV in the cat, and rabies virus in the cat and dog. Rabies titers, however, are often not acceptable to exempt individual animals from mandated rabies boosters in spite of medical justifcation.  Serum antibody titers are of limited or no value for the other vaccines.

*  Excerpted from : J  Sm An Pract 48, 528 541, 2007.

Thyroid Disease and Autoimmune Thyroiditis

W. Jean Dodds, DVM

HEMOPET

938 Stanford Street

Santa Monica, CA 90403

(310) 828-4804;FAX (310) 453-5240

www.hemopet.org; hemopet@hotmail.com

Introduction

Hypothyroidism is the most common endocrine disorder of canines, and up to 80% of cases result from autoimmune (lymphocytic) thyroiditis. The heritable nature of this disorder poses significant genetic implications for breeding stock. Thus, accurate diagnosis of the early compensatory stages of canine autoimmune thyroiditis leading up to hypothyroidism affords important genetic and clinical options for prompt intervention and case management. Continue reading Thyroid Disease and Autoimmune Thyroiditis

Thyroid Diagnosis & Treatment

FAQs: THYROID DIAGNOSTICS & TREATMENT
W. Jean Dodds, DVM
Hemopet/Hemolife
www.hemopet.org

Q. When do classical clinical signs of canine hypothyroidism appear  ?
A.  The classical clinical signs with low thyroid values occur only after 70% or more of thyroid tissue has been destroyed or damaged. Other clinical and behavioral changes can present during the early phase. Continue reading Thyroid Diagnosis & Treatment

Evamist Hormone Spray May Cause Illness in Pets

http://www.fda.gov/
July 29, 2010
The Center for Veterinary Medicine would like pet owners to know that Evamist (estradiol transdermal spray), a topical hormone replacement product, sprayed on the forearm to reduce hot flashes in women during menopause, has the potential to cause health problems in pets exposed to the product on the owner’s skin. Continue reading Evamist Hormone Spray May Cause Illness in Pets

Merrick Pet Care Recalls Texas Hold’ems

10 oz Bag (Item # 60016 Lot 10127 Best by May 6 2012) because of Possible Salmonella Health Risk

FOR IMMEDIATE RELEASE ‘ August 3, 2010’“ Merrick Pet Care, Inc. of Amarillo, Texas is extending its July 2,2010 recall of 10 oz “Beef Filet Squares for Dogs (Texas Hold’Ems)” pet treat (ITEM # 60016 LOT # 10084TL7 BEST BY MARCH 24, 2012) to also include 83 cases of “Texas Hold’ems” (ITEM # 60016 LOT # 10127 BEST BY MAY 6, 2012) because they have the potential to be contaminated with Salmonella. Continue reading Merrick Pet Care Recalls Texas Hold’ems

Dogs on low-cal diet lived 1.8 yrs longer: study shows

ScienceDaily (Apr. 20, 2007)  Changes caused to bugs in the gut by restricting calorie intake may partly explain why dietary restriction can extend lifespan, according to new analysis from a life-long project looking at the effects of dietary restriction on Labrador Retriever dogs.
Continue reading Dogs on low-cal diet lived 1.8 yrs longer: study shows